推荐系统的分类
推荐系统的分类(Taxonomy of Recommender Systems)
推荐算法
###1. Non-Personalized summary Statistics
- External Community Data
–Best-seller;Most popular;Trending Hot - summary of Community Ratings
–Best-liked 例如: 音乐排行榜
###2. Content-Based Filtering (基于内容的过滤)
–information filtering 信息过滤
–knowledge-based 基于知识
User Rating X item Attributes => Model
Model applied to new items via attributes
alternative : knowledge-based
-Item attributes form model of item space
–users navigate/browse that space
例如:
- Personalized news feeds
- Artist or Genre music feeds
###3. Collaborative Filtering (协同过滤)
- User-User
Select neighborhood of similar-taste people
variant: select people you know/trust
Use their opinions Item-Item
Pre-compute similarity among items via ratings
use own ratings to triangulate for recommendationsDimensionality Reduction (奇异值分解 SVD)
create lower dimensional matrix through mathmetic methods
intuition: taste yields a lower-dimensionality matrix
Compress and use a taste representation
Personalized Collaborative Filtering
- Use opinions of others to predict/recommend
- User-model – set of ratings
- item-model – set of ratings
- common core: sparse matrix of ratings
–Fill in missing values(predict)
–Select promising cells(recommend) - Several different techniques
###4. Others
–Critique/Interview Based Recommendations
–Hybrid Techniques
From The Abstrct to the Specific(从抽象到具体)
Basic Model
--User
--Ratings
--Item
注意评估
为了更好的理解每种算法的好处,我们会花大量的时间来评估
1.推荐的准确度
2 推荐的有用性
3.计算性能